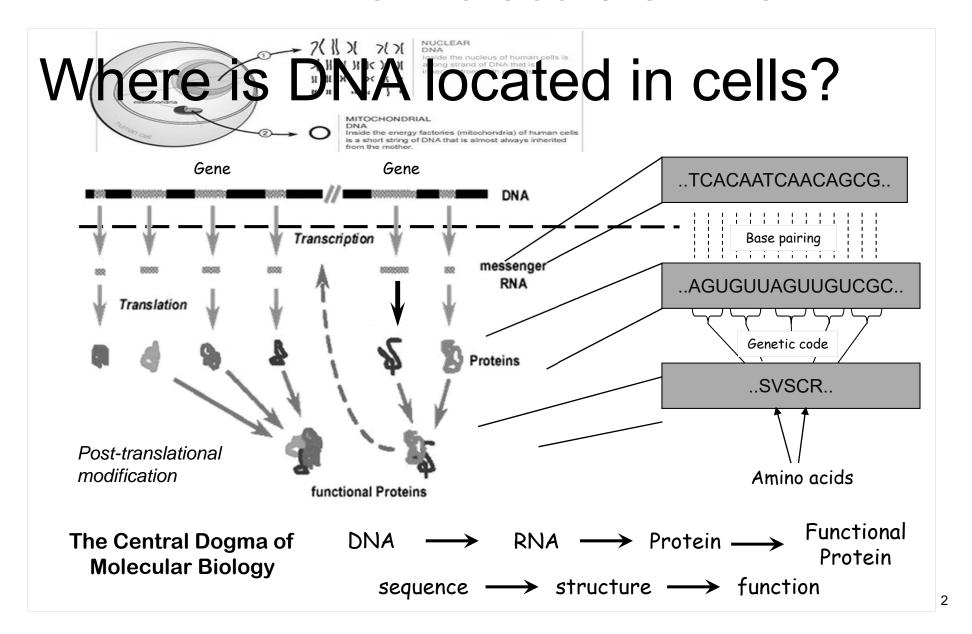
Seminar of Genomic Study

2020 Spring Semester


Liang-Chuan Lai

Email: llai@ntu.edu.tw

Ph: 23123456 ext. 88241

https://ceiba.ntu.edu.tw/1082Physio7017_

DNA: The Molecule of Life

Vertebrate Mitochondrial Codon

Differences from the universal codon

DNA codons	RNA codons	This code (2)	
AGA	AGA	STOP = Ter (*)	
AGG	AGG	STOP = Ter (*)	
ATA	AUA	Met (M)	
TGA	UGA	Trp (W)	

Standard code (1)		
	Arg(R)	
	Arg(R)	
	Ile(I)	
	STOP = Ter (*)	

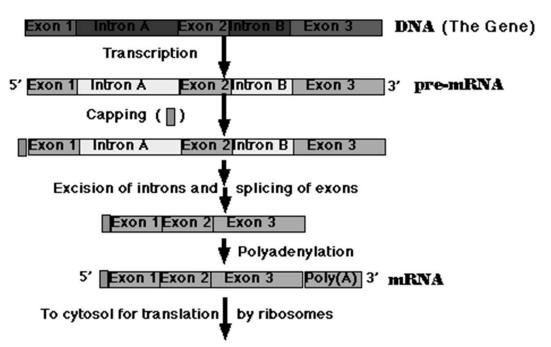
	Second letter						
		U	С	Α	G		
First letter	U	UUU } Phe UUC } Leu UUG } Leu	UCU UCC UCA UCG	UAU Tyr UAA Stop UAG Stop	UGU Cys UGA Trp UGG Trp	U C A G	
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAA GIn CAG	CGU CGC CGA CGG	U C A G	Third
Firs	Α	AUU } IIe AUA } Met AUG }	ACU ACC ACA ACG	AAU ASN AAA AAA Lys	AGU Ser AGA Stop AGG Stop	U C A G	Third letter
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC Asp GAA GAG Glu	GGU GGC GGA GGG	U C A G	

Gene Expression: Transcription

Central dogma of biology: DNA → RNA → protein

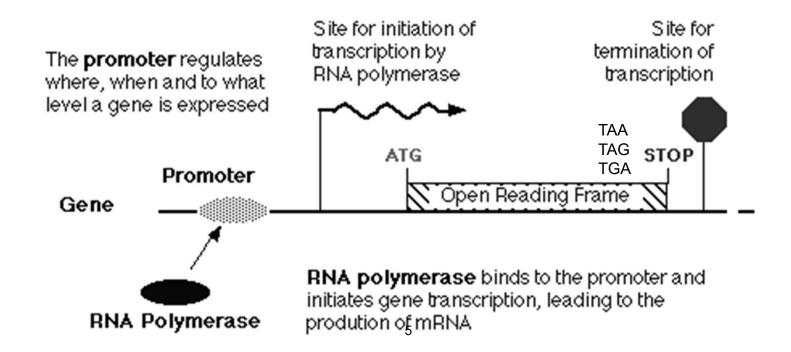
```
5' ...A T G G C C T G G A C T T C A... 3' Sense strand of DNA
3' ...T A C C G G A C C T G A A G T... 5' Antisense strand of DNA

Transcription of antisense strand

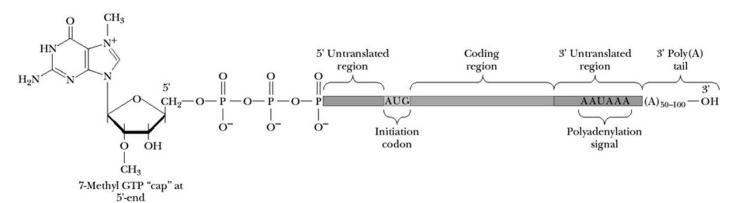

5' ...A U G G C C U G G A C U U C A... 3' mRNA

Translation of mRNA

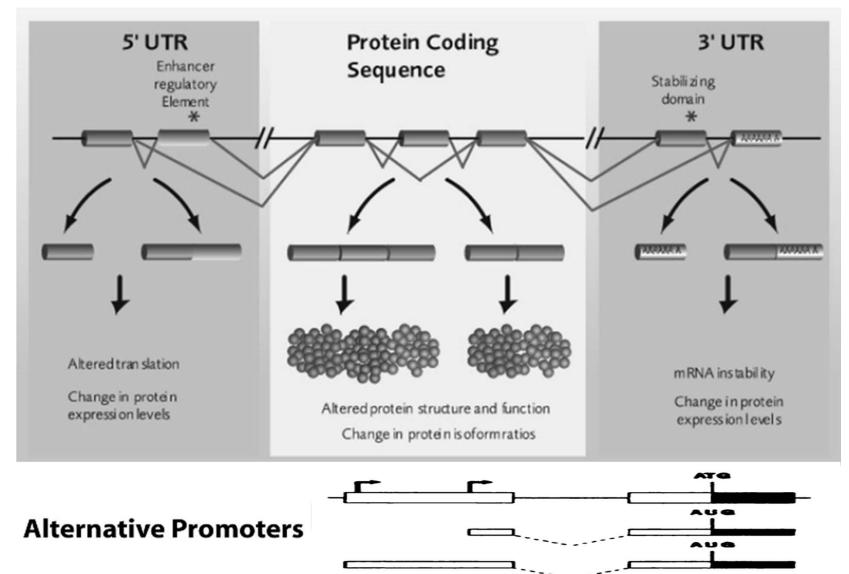
Met— Ala— Trp— Thr — Ser — Peptide
```

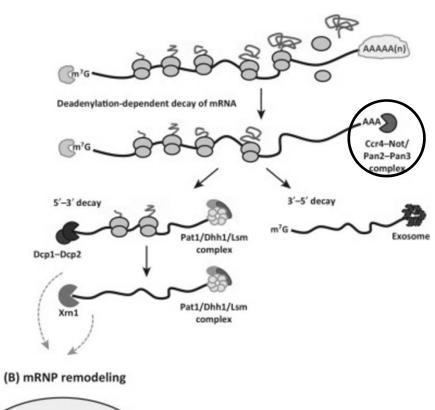

RNA Processing: pre-mRNA → mRNA

- Capping
- Splicing
- Polyadenylation

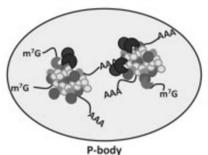

Gene Expression: Transcription

Gene is a portion of DNA that contains both "coding" sequences that determine what the gene does, and "non-coding" sequences that determine when the gene is active (expressed)

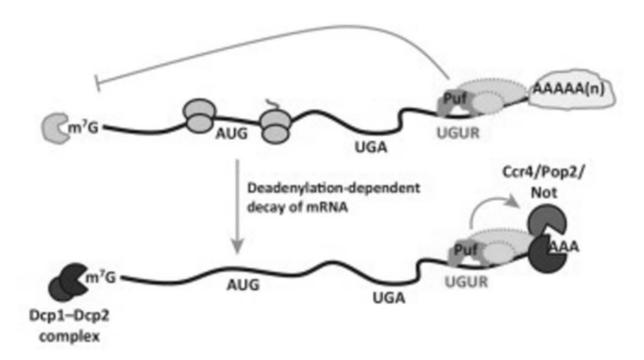



Structure of Mature mRNA

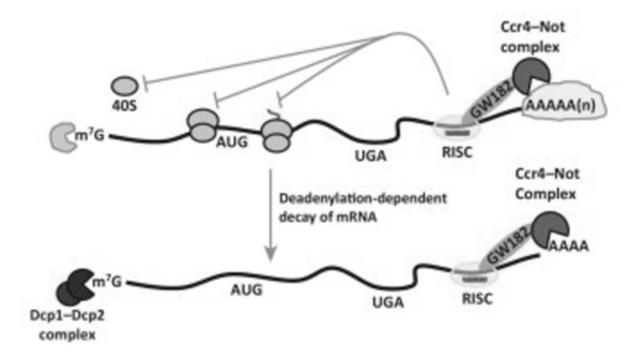
- Coding region
- 7-methyl-GTP cap
 - Bound by cap binding proteins
- Untranslated regions
 - 5' UTR
 - Translation regulation
 - 3' UTR
 - Stability elements
 - Subcellular localization (zip codes)
- Poly(A) tail

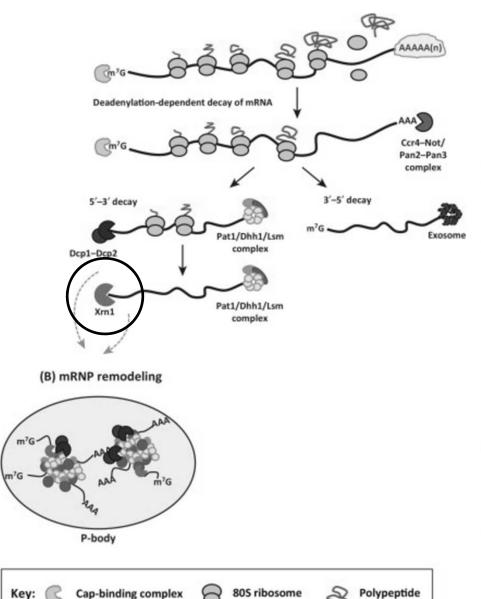


The Impact of Alternative RNA Splicing



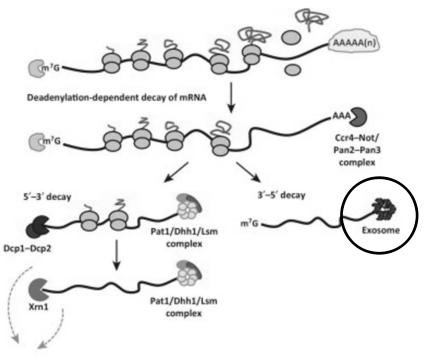
- Normal mRNA degradation pathways
- Poly(A) shortening:
 catalyzed by the Ccr4–Not
 and poly(A)-specific
 deadenylases
 - 1.1 Puf proteins
 - 1.2 RNA-induced silencing complex (RISC)





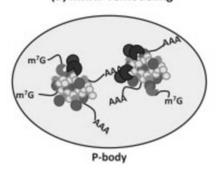
- 1.1 Puf proteins mediate translation repression and mRNA decay
 - Puf binding elements (UGUR) in the mRNA
 - Recruitment of the Ccr4–Not deadenylase complex can trigger deadenylation-dependent mRNA decay

- 1.2 Binding of the RNA-induced silencing complex (RISC)
 - inhibition of translation initiation: interfering with cap recognition, 40S recruitment, 60S subunit joining
 - Interaction with the Ccr4–Not deadenylase complex triggers deadenylation-dependent mRNA degradation



- Normal mRNA degradation pathways
- 2.1. 5'–3' decapping-dependent decay: Xrn1-mediated exonucleolytic decay

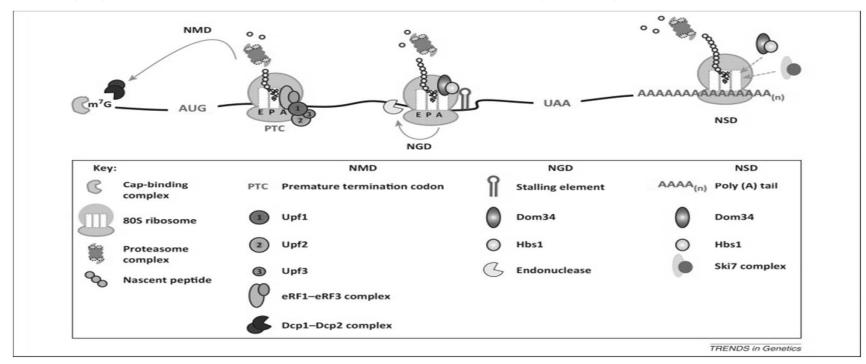
P-body


- RNA-protein cytoplasmic granules
- RNA targeted for decay
- Proteins:
 - Cap-binding complex:
 Dcp1–Dcp2, Xrn1
 - Pat1, Dhh1, and Lsm complex

 Normal mRNA degradation pathways

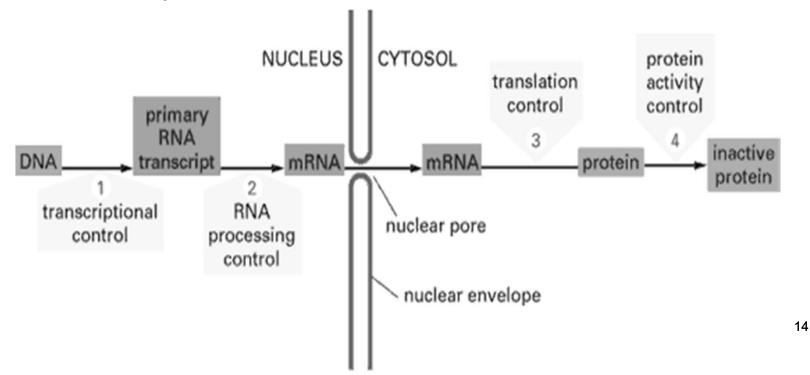
2.2. 3'-5' exosome-mediated exonucleolytic decay

(B) mRNP remodeling



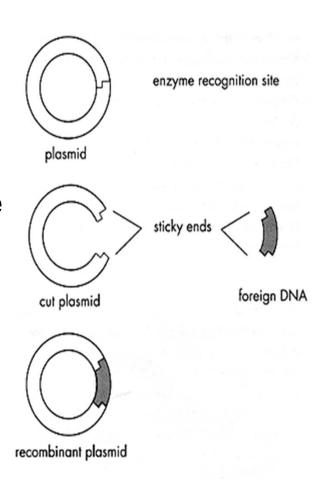
Abnormal Translational Events Leading to Accelerated mRNA Decay

Abnormal translation events


- ◆ A premature termination event → nonsense-mediated decay (NMD)
- An elongation stall → no-go decay (NGD)
- Poly(A) translation → nonstop decay (NSD)

To Explore Gene Regulation

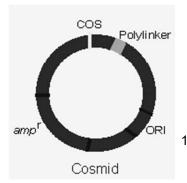
4 steps to control gene expression:


- Transcriptional control: actinomycin D
- RNA processing control (5' capping, splicing, poly A)
- Translation control: cycloheximide vs. MG132
- Protein activity control

Loss-of-function vs. Gain-of-function

- Loss-of-function analysis (artificial gene interference): an operation that results in reduced or abolished protein function
 e.g. siRNA library
- Gain-of-function analysis (ectopic expression): an operation that results in increased protein function e.g. cDNA library

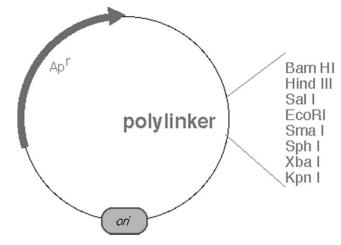
- Developed in 1970s and 1980s
- Recombinant DNA technology
 - Also known as genetic engineering or cloning
 - The ability to combine the DNA of one organism with the DNA of another organism
 - Use enzymes to cut (restriction enzyme) and paste (ligase) DNA into "recombinant" molecules
- Clone: organisms or cells of nearly identical genetic makeup derived from a single source



Vector: a DNA molecule used as a vehicle to transfer foreign genetic material into another cell

- Major types of vectors:
 - Plasmids: a DNA molecule that is separate from the chromosomal DNA, and can replicate independently (1–20 kb of DNA)
 - Cosmids: cos sites + plasmid (40–50 kb of DNA)
 - Artificial chromosomes (150–350 kb of DNA): e.g., bacterial artificial chromosome (BAC), yeast artificial chromosome (YAC)
 - Virus (8–10 kb of DNA)

COS:


cohesive end **s**ite (sticky ends of two singlestranded segments)

- Major types of vectors:
 - Viruses: Retroviruses only infect dividing cells

	Adeno- associated virus (AAV)	Adenovirus	Lentivirus
Genome	ssDNA	dsDNA	ssRNA
Relative transduction efficiency	70%	100% (except blood cells)	70%
Host genome interaction	Non-integrating (transient)	Non-integrating (transient)	Integrating (long-lasting)
Tropism	Tropism Dividing and non-dividing cells		Dividing and non-dividing cells
Immune response	Very low	High	Low

- Common to all engineered vectors:
 - an origin of replication
 - a multi-cloning site
 - a selectable marker

- Transformation: insertion of a vector into the bacterial cells
- Transfection: insertion of a vector into the eukaryotic cells
- Transduction: insertion of virus into bacteria or cells

Factors Influencing Transfection Efficiency

Transfection method

Chemical

Chemical methods that use carrier molecules to neutralize or impart a positive charge to the negatively charged nucleic acids and include:

- · Cationic lipid transfection
- Calcium phosphate transfection
- DEAE-dextran transfectopm
- Delivery by other cationic polymers (e.g., polybrene, PEI, dendrimers)

Biological

Biological methods that rely on genetically engineered viruses to transfer non-viral genes into cells (also known as transduction) and include:

Viral delivery

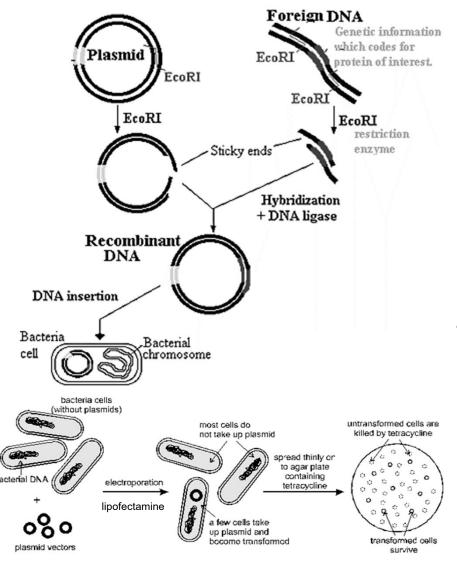
Physical

Physical methods directly deliver nucleic acids into the cytoplasm or the nucleus of the cell and include:

- Electroporation
- Biolistic particle delivery (particle bombardment)
- · Direct microinjection
- Laser-mediated transfection (phototransfection)

Diethylaminoethyl (DEAE)-dextran: a polycationic derivative of the carbohydrate polymer dextran

https://www.thermofisher.com/tw/zt/home/references/gibco-cell-culture-basics/transfection-basics/gene-delivery-technologies/deae-dextran-mediated-delivery.html

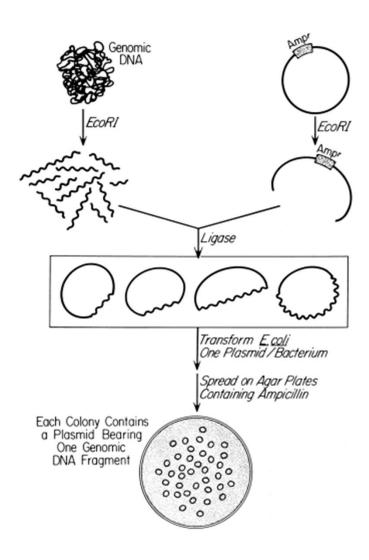

Factors Influencing Transfection Efficiency

- Cell type
- Cell health and viability
 - at least 90% viable prior to transfection
 - have had sufficient time (24 h) to recover from passaging
- Confluency
 - 70–90% confluency for adherent cells
 - 5×10^5 to 2×10^6 cells/mL for suspension cells
- Media: fresh medium, especially if any of the components are unstable

Factors Influencing Transfection Efficiency

- Antibiotics
 - cationic lipid reagents increase cell permeability >
 antibiotics resulting in cytotoxicity
- Type of molecule
 - supercoiled plasmid DNA: most efficient
 - linear DNA: lower DNA uptake but yields optimal integration of DNA into the host genome

Recombinant Bacteria


- Remove bacterial DNA (plasmid)
- Cut the Bacterial DNA with "restriction enzymes"
- 3. Cut the DNA from another organism with "restriction enzymes"
- 4. Combine the cut pieces of DNA together with ligase and insert them into bacteria
- Reproduce the recombinant bacteria
- 6. The foreign genes will be expressed in the bacteria 23

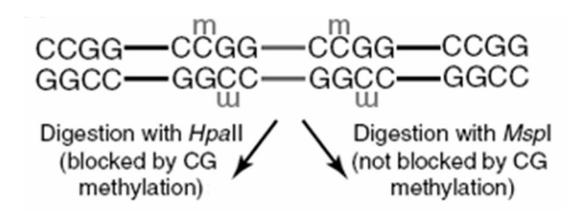
Question

What is the meaning of genomic library?

- A genomic library is a collection of the total genomic DNA from a single organism
- The DNA is stored in a population of identical vectors, each containing a different insert of DNA

Genomic Library

each of which carries a DNA molecule that was inserted into a cloning vector, such that the collection of cloned DNA molecules represents the entire genome of the source organism (e.g. genomic library)

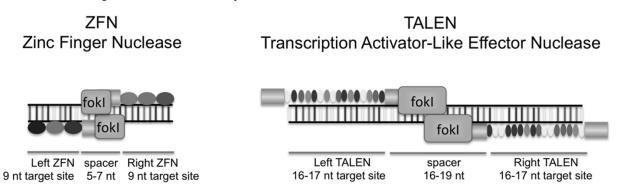

- Exonucleases: enzymes that work by cleaving nucleotides from the end (exo) of a polynucleotide chain
- Endonuclease: enzymes cleaves phosphodiester bonds in the middle (endo) of a polynucleotide chain
- Cuts DNA at or near restriction sites (specific recognition nucleotide sequences)
 - Between 4 and 8 bases (occur once every 256 (4⁴) –
 65536 (4⁸) bp)
 上海自來水來自海上
 - Palindromic sequence
 - Mirror-like: GTAATG
 - Complementary: GTATAC
 - Sticky or blunt end

花蓮白種人種白蓮花

- Neoschizomer: different enzymes that recognize the same location but cleave in different location
- Isoschizomer: different enzymes that recognize and cleave in the same location
 - Methylation Isoschizomer

Hpall vs Mspl

Classification:

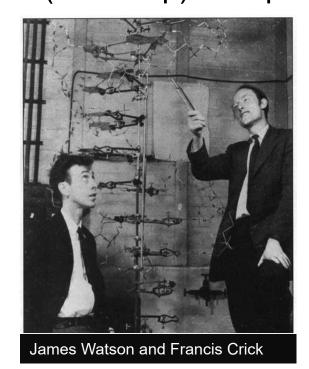

- Type I: cleave at sites remote (> 1,000 bp) away from recognition site; require both ATP and S-adenosyl-Lmethionine
- Type II: cleave within (IIP) or at short specific distances
 [IIS, IIG (or IIC)] from recognition site; require magnesium (e.g., EcoRI)
- Type III: cleave at sites a short distance (20-30 bp) from recognition site; require ATP (tagging enzyme)
- Type IV: target modified DNA (e.g., methylated DNA)
- Type V: utilize guide RNAs to target specific nonpalindromic sequences found on invading organisms (e.g., the cas9-gRNA complex from CRISPRs)

 Nomenclature based on bacterial genus, species and strain E.g., EcoRI

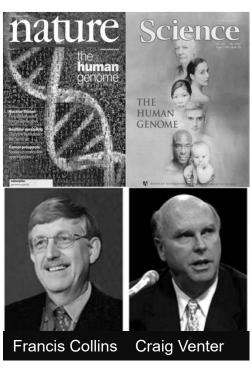
E: Escherichia co: coli

R: RY13 I: first identified

 Artificial restriction enzymes: fusing a natural or engineered DNA binding domain [Zinc finger nuclease (ZFN); TAL (transcription activator-like) effector nuclease (TALEN)] to a nuclease domain (cleavage domain of the type IIS restriction enzyme Fokl)



29


Human Genome Project

- Started in 1990 by 20 centers of six nations, led first by Watson and after 1992 by Collins
- The completed sequence of the human genome (3x10⁹ bp) was published in April 2003

Question:

Which technique can be applied to measure gene expression?

- A) Hybridization-based techniques
- B) PCR-based techniques
- C) Sequence-based techniques
- D) All of them

Comparative Gene-expression Analysis

- Hybridization-based techniques
 - Northern blot
 - Microarrays
- PCR-based techniques
 - Differential display
 - Rapid amplification of cDNA ends (RACE)
 - Subtractive hybridization
- Sequence-based techniques
 - EST (expressed sequence tags)
 - SAGE (serial analysis of gene expression)
 - CAGE (capped analysis of gene expression)
 - Next generation sequencing (NGS)

Question:

Which hybridization technique can be used to detect the amount of polysaccharide?

- A) Eastern blotting
- B) Western blotting
- C) Southern blotting
- D) Northern blotting

Agarose vs. Polyacrylamide Gels

- Agarose gels
 - to resolve large fragments of DNA
- Polyacrylamide gels
 - to separate shorter nucleic acids, generally in the range of 1–1000 base pairs, based on the concentration used
- Gels without a denaturant (e.g., SDS): native gels

Agarose Gels

- Secondary structure affects migration at different rates
- Secondary structure will not form in denaturing gels → only the length of the DNA will affect mobility

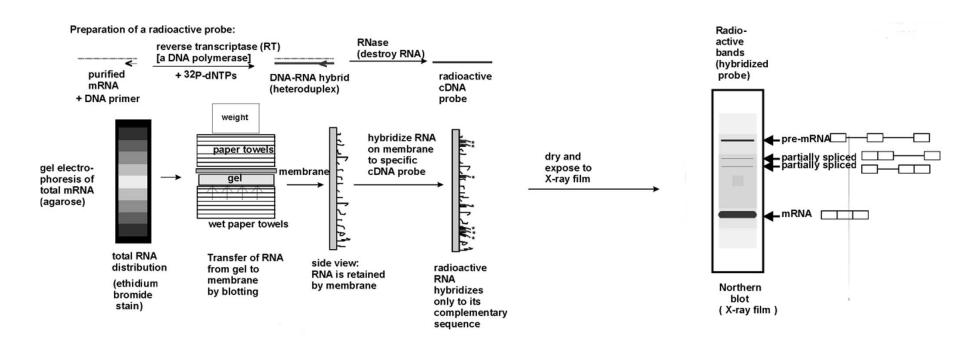
% agarose	Size Range for Optimum Resoultion (bp)	% acrylamide	Size Range for Optimum Resoultion (bp)
0.5	1,000-30,000	3.5	1,000-2,000
0.7	800-12,000	5	80-500
1.0	500-10,000	8	60-400
1.2	400-700	12	25-150
4.5	200 500	45	05.450

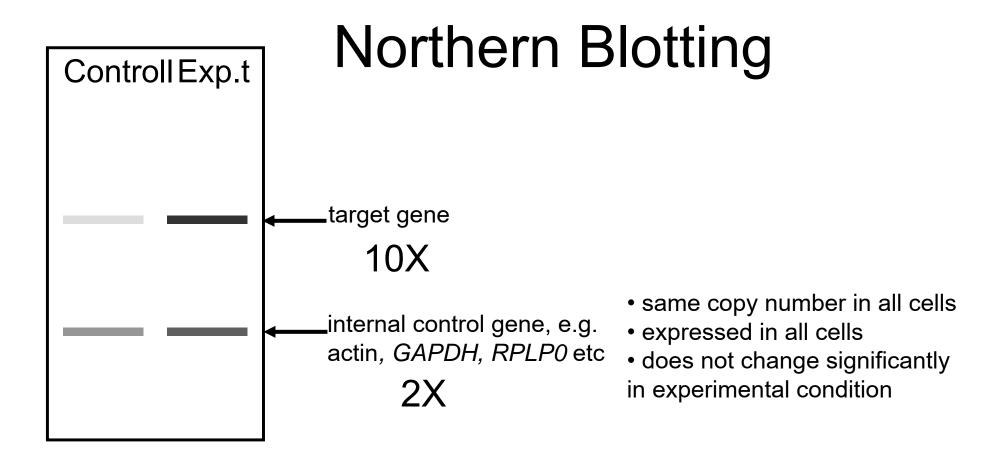
Polyacrylamide Gels

6-100

Troubleshooting Gel Electrophoresis

- Blurry bands
 - Too much DNA (100–250 ng/mm well width)
 - Too much salt
- Bands in the wrong place
 - Heat nucleic acids before running on a native gel
 - Run gel >20 V/cm (run gel slowly → sharper bands)
 - Gel temp. >30 °C
- Loading buffer floats away
 - Some salts built up in the wells
 - → Rinse wells with running buffer before loading
 - → Add a little more glycerol to the dye


Question


Which gel is the best choice for running microRNA samples?

- A)10% Polyacrylamide gels
- B) 1% Polyacrylamide gels
- C) 1% Agarose gels
- D) 0.5% Agarose gels

Hybridization-based techniques₁

- Northern blotting
 - Detect a specific human RNA sequence in total cell RNA (probe: labeled DNA; target: RNA on membrane)

Corrected fold increase = 10/2 = 5

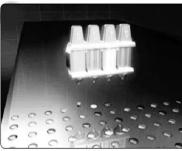
Ratio target gene in experimental/control = fold change in target gene fold change in reference gene

Hybridization-based techniques₂

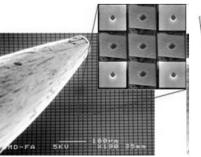
Microarray

- Small, solid supports onto which the sequences from thousands of different genes or EST (Expressed Sequence Tag) are immobilized at fixed locations
- Support: glass microscope slides, silicon chips or nylon membranes
- Spots (probes): DNA, cDNA, or oligonucleotides (20-70mers)
 - cDNA: high sensitivity, low specificity
 - Oligomer: high specificity, low sensitivity
- Tagged samples (targets): reverse-transcribed RNA into cDNA with a tracking molecule like a radioisotope, fluorescent dye, or an affinity molecule (e.g., biotin)

Microarray Platforms

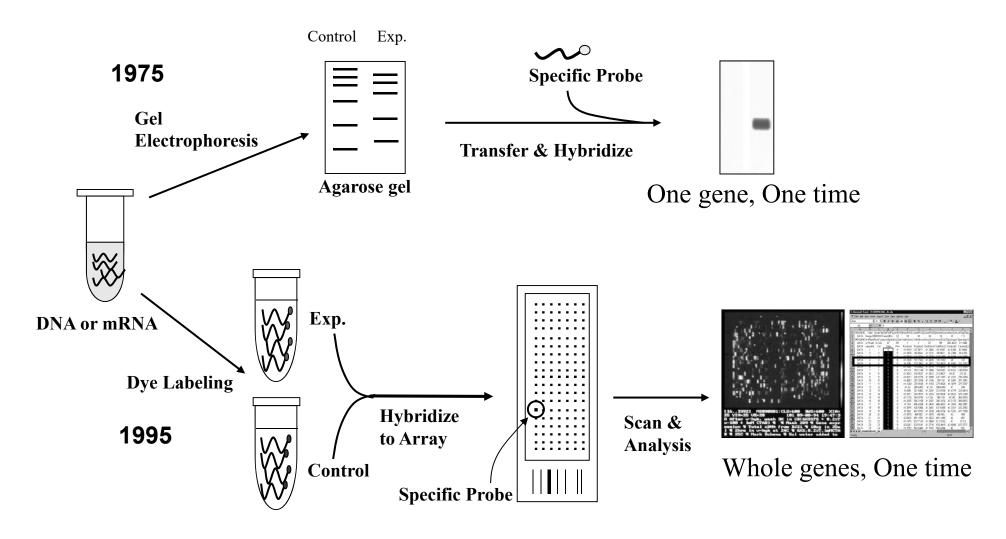

Two-Color Platform:

- In-house spotted arrays
- Prespotted array—inkjet print (Agilent)


One-Color Platform:

- GeneChip photolithograph (Affymetrix)
- Maskless array synthesis Roche (NimbleGen)
- BeadChip Illumina

Advantages & Applications of Microarray


Advantages:

- Favor small sample size
- High throughput: gather data on thousands of genes (genome) in a single experiment
- Quantitative analysis

Application:

- Gene expression
- Genotyping-polymorphisms (SNP) and copy number variation
- Binding site identification: ChIP-on-chip
- Epigenetics: methylation chip
- Epigenetics: non-coding RNA, e.g., microRNA, lncRNA

High Throughput of Traditional Experiment

