• 00:00 1.
    index 1
  • 00:06 2.
    index 2
  • 00:09 3.
    PL = Pal – Ppl(1)Pw = Ppl – Pbs(2)(1) + (2)Prs = PL + Pw = Pal – Pbsa) Pbs =0  Pw = Ppl = Pes Prs = Palb) Pao = VRaw + Pal When flow=0, Pao = Pal = Prsc) PL = Pal – Ppl = Pao|flow=0 – Pes
  • 00:10 4.
    Key Points
  • 00:10 5.
    PL = Pal – Ppl(1)Pw = Ppl – Pbs(2)(1) + (2)Prs = PL + Pw = Pal – Pbsa) Pbs =0  Pw = Ppl = Pes Prs = Palb) Pao = VRaw + Pal When flow=0, Pao = Pal = Prsc) PL = Pal – Ppl = Pao|flow=0 – Pes
  • 00:11 6.
    Key Points
  • 01:21 7.
    PL = Pal – Ppl(1)Pw = Ppl – Pbs(2)(1) + (2)Prs = PL + Pw = Pal – Pbsa) Pbs =0  Pw = Ppl = Pes Prs = Palb) Pao = VRaw + Pal When flow=0, Pao = Pal = Prsc) PL = Pal – Ppl = Pao|flow=0 – Pes
  • 01:49 8.
    Elastic Recoil of the Chest Wall
  • 04:10 9.
    Elastic Recoil of the Chest Wall
  • 06:19 10.
    Lung-Chest Wall Couplingin Static Status at Different Lung Volume
  • 08:24 11.
    Lung-chest Wall Coupling to Determine FRC
  • 13:33 12.
    Static Elastic Properties of the Lung and Chest Wall
  • 16:05 13.
    Static Elastic Properties of the Lung and Chest Wall
  • 18:22 14.
    Transmural Pressure Across the Lung Wall in Dynamic Status
  • 20:42 15.
    The Mechanics of Quiet Breathing
  • 26:24 16.
    P-V Relationships and Schematic Events of Resp. Cycle
  • 32:34 17.
    P-V Relationships and Schematic Events of Resp. Cycle
  • 34:30 18.
    Outline
  • 34:44 19.
    Overview
  • 35:04 20.
    Diffusion and Gas Transport
  • 36:08 21.
    Alveolo-Capillary Barrier
  • 36:43 22.
    Diffusion
  • 37:50 23.
    Diffusion Capacity
  • 39:01 24.
    Diffusion Capacity
  • 40:55 25.
    Physiologic Changes That Alter Diffusion Capacity
  • 40:55 26.
    Diffusion Capacity
  • 41:11 27.
    Physiologic Changes That Alter Diffusion Capacity
  • 43:06 28.
    Capillary Transit Time
  • 46:07 29.
    Perfusion-limited Gas
  • 47:18 30.
    Diffusion-limited Gas
  • 56:43 31.
    Diffusion and Perfusion Limitations
  • 59:01 32.
    Interpretation of Pulmonary Function Test
  • 1:03:51 33.
    Transport of O2 and CO2
  • 1:03:57 34.
    Oxygen Transport
  • 1:04:37 35.
    Blood Gas Measurement
  • 1:05:41 36.
    Blood Gas Measurement
  • 1:07:41 37.
    O2 Bound to Hb
  • 1:08:10 38.
    O2 Bound to Hb
  • 1:10:18 39.
    slido
  • 1:10:42 40.
    ** after Resp_Physiol 2022 v3.pptm
  • 1:11:17 41.
    What does pulse oximeter measure?O2 dissolved in the blood plasmaO2 bound with hemoglobin
  • 1:12:19 42.
    O2 Concentration & Saturation in Anemia
  • 1:13:47 43.
    Cooperative Interactions
  • 1:16:29 44.
    O2 Bound to Hb
  • 1:19:23 45.
    O2 Bound to Hb
  • 1:21:57 46.
    Factors Affecting O2 Bound to Hb
  • 1:24:18 47.
    CO2 Transport
  • 1:25:32 48.
    CO2 Transport
  • 1:27:21 49.
    CO2 Transport
  • 1:27:57 50.
    CO2 Equilibrium Curve
  • 1:31:20 51.
    Assessment of Arterial Hypoxemia
  • 1:35:09 52.
    Slide 180
  • 1:37:29 53.
    Slide 181
  • 1:40:40 54.
    Outline
  • 1:40:47 55.
    Control of Respiration
  • 1:41:46 56.
    Overview
  • 1:42:50 57.
    Receptors
  • 1:43:53 58.
    Receptors
  • 1:46:05 59.
    Receptors
  • 1:47:28 60.
    Central Controller in Brain Stem
  • 1:47:51 61.
    slido
  • 1:48:08 62.
    Slide 190
  • 1:48:08 63.
    Central Controller
  • 1:48:09 64.
    Slide 190
  • 1:49:04 65.
    Central Controller
  • 1:49:40 66.
    Central Controller
  • 1:51:00 67.
    Respiratory Neurons in the Brain Stem
  • 1:54:29 68.
    正常情況下,什麼時候正常呼吸的型態會改變?
  • 1:54:39 69.
    Central Controller
  • 1:55:22 70.
    Central Controller
  • 1:55:22 71.
    Central Controller
  • 1:55:33 72.
    Central Controller
  • 1:56:33 73.
    Effectors
  • 1:57:21 74.
    Outline
  • 2:01:59 75.
    Effectors
  • 2:02:16 76.
    Outline
  • 2:05:53 77.
    Overview
  • 2:06:03 78.
    slido
  • 2:06:15 79.
    Chemical Control of Resp.
  • 2:07:28 80.
    Central Chemoreceptor
  • 2:09:10 81.
    Peripheral Chemoreceptor
  • 2:10:15 82.
    Silent Hypoxia (Happy Hypoxia)
  • 2:11:12 83.
    Regulation of breathing in response to changes in blood PCO2, PO2, and pH (H+) via negative feedback control
  • 2:13:04 84.
    Slide 206
  • 2:14:14 85.
    Outline
  • 2:14:24 86.
    Acid-base Balance
  • 2:15:58 87.
    Effectiveness of a Buffer System
  • 2:17:22 88.
    Bicarbonate
  • 2:17:58 89.
    The Effect of Bicarbonate on Blood pH
  • 2:20:09 90.
    Davenport Diagram
  • 2:21:52 91.
    Respiratory Disturbances
  • 2:22:32 92.
    Metabolic Disturbances
  • 2:23:22 93.
    Compensatory Responses
  • 2:25:25 94.
    Compensatory Responses
  • 2:26:14 95.
    Outline
  • 2:26:23 96.
    Rest-to-Work Transitions
  • 2:27:29 97.
    Sub-maximal Exercise
  • 2:28:10 98.
    Ventilatory Control During Submaximal Exercise
  • 2:28:29 99.
    High Intensity Exercise
  • 2:29:35 100.
    High Intensity Exercise
  • 2:30:17 101.
    Oxygen Debt
  • 2:32:00 102.
    呼吸系統是運動的限制因子嗎?
  • 2:32:05 103.
    Do the Lungs Limit Exercise Performance?
  • 2:32:42 104.
    Effect of Training on Ventilation
  • 2:33:40 105.
    How to Increase Resp. Function During Exercise?
  • 2:38:23 106.
    How to Increase Resp. Function During Exercise?
  • 2:41:30 107.
    Effect of High Altitude on Resp. Function
  • 2:42:12 108.
    Immediate: Increased in Ventilation
  • 2:45:05 109.
    Days: Decreased Affinity of Hemoglobin for Oxygen
  • 2:47:19 110.
    Days to weeks: Increased Hemoglobin Production
  • 2:48:42 111.
    Respiratory Adaptations to High Altitude
  • 2:50:11 112.
    Overview
  • 2:51:12 113.
    The End
  • 2:51:13 114.
    ** after Resp_Physiol 2022 v3.pptm
  • Index
  • Notes
  • Comment
  • Fullscreen
111碩博大生Respiration221006
Duration: 2:51:18, Browse: 375, Last Updated: 2022-10-06
    • 00:00 1.
      index 1
    • 00:06 2.
      index 2
    • 00:09 3.
      PL = Pal – Ppl(1)Pw = Ppl – Pbs(2)(1) + (2)Prs = PL + Pw = Pal – Pbsa) Pbs =0  Pw = Ppl = Pes Prs = Palb) Pao = VRaw + Pal When flow=0, Pao = Pal = Prsc) PL = Pal – Ppl = Pao|flow=0 – Pes
    • 00:10 4.
      Key Points
    • 00:10 5.
      PL = Pal – Ppl(1)Pw = Ppl – Pbs(2)(1) + (2)Prs = PL + Pw = Pal – Pbsa) Pbs =0  Pw = Ppl = Pes Prs = Palb) Pao = VRaw + Pal When flow=0, Pao = Pal = Prsc) PL = Pal – Ppl = Pao|flow=0 – Pes
    • 00:11 6.
      Key Points
    • 01:21 7.
      PL = Pal – Ppl(1)Pw = Ppl – Pbs(2)(1) + (2)Prs = PL + Pw = Pal – Pbsa) Pbs =0  Pw = Ppl = Pes Prs = Palb) Pao = VRaw + Pal When flow=0, Pao = Pal = Prsc) PL = Pal – Ppl = Pao|flow=0 – Pes
    • 01:49 8.
      Elastic Recoil of the Chest Wall
    • 04:10 9.
      Elastic Recoil of the Chest Wall
    • 06:19 10.
      Lung-Chest Wall Couplingin Static Status at Different Lung Volume
    • 08:24 11.
      Lung-chest Wall Coupling to Determine FRC
    • 13:33 12.
      Static Elastic Properties of the Lung and Chest Wall
    • 16:05 13.
      Static Elastic Properties of the Lung and Chest Wall
    • 18:22 14.
      Transmural Pressure Across the Lung Wall in Dynamic Status
    • 20:42 15.
      The Mechanics of Quiet Breathing
    • 26:24 16.
      P-V Relationships and Schematic Events of Resp. Cycle
    • 32:34 17.
      P-V Relationships and Schematic Events of Resp. Cycle
    • 34:30 18.
      Outline
    • 34:44 19.
      Overview
    • 35:04 20.
      Diffusion and Gas Transport
    • 36:08 21.
      Alveolo-Capillary Barrier
    • 36:43 22.
      Diffusion
    • 37:50 23.
      Diffusion Capacity
    • 39:01 24.
      Diffusion Capacity
    • 40:55 25.
      Physiologic Changes That Alter Diffusion Capacity
    • 40:55 26.
      Diffusion Capacity
    • 41:11 27.
      Physiologic Changes That Alter Diffusion Capacity
    • 43:06 28.
      Capillary Transit Time
    • 46:07 29.
      Perfusion-limited Gas
    • 47:18 30.
      Diffusion-limited Gas
    • 56:43 31.
      Diffusion and Perfusion Limitations
    • 59:01 32.
      Interpretation of Pulmonary Function Test
    • 1:03:51 33.
      Transport of O2 and CO2
    • 1:03:57 34.
      Oxygen Transport
    • 1:04:37 35.
      Blood Gas Measurement
    • 1:05:41 36.
      Blood Gas Measurement
    • 1:07:41 37.
      O2 Bound to Hb
    • 1:08:10 38.
      O2 Bound to Hb
    • 1:10:18 39.
      slido
    • 1:10:42 40.
      ** after Resp_Physiol 2022 v3.pptm
    • 1:11:17 41.
      What does pulse oximeter measure?O2 dissolved in the blood plasmaO2 bound with hemoglobin
    • 1:12:19 42.
      O2 Concentration & Saturation in Anemia
    • 1:13:47 43.
      Cooperative Interactions
    • 1:16:29 44.
      O2 Bound to Hb
    • 1:19:23 45.
      O2 Bound to Hb
    • 1:21:57 46.
      Factors Affecting O2 Bound to Hb
    • 1:24:18 47.
      CO2 Transport
    • 1:25:32 48.
      CO2 Transport
    • 1:27:21 49.
      CO2 Transport
    • 1:27:57 50.
      CO2 Equilibrium Curve
    • 1:31:20 51.
      Assessment of Arterial Hypoxemia
    • 1:35:09 52.
      Slide 180
    • 1:37:29 53.
      Slide 181
    • 1:40:40 54.
      Outline
    • 1:40:47 55.
      Control of Respiration
    • 1:41:46 56.
      Overview
    • 1:42:50 57.
      Receptors
    • 1:43:53 58.
      Receptors
    • 1:46:05 59.
      Receptors
    • 1:47:28 60.
      Central Controller in Brain Stem
    • 1:47:51 61.
      slido
    • 1:48:08 62.
      Slide 190
    • 1:48:08 63.
      Central Controller
    • 1:48:09 64.
      Slide 190
    • 1:49:04 65.
      Central Controller
    • 1:49:40 66.
      Central Controller
    • 1:51:00 67.
      Respiratory Neurons in the Brain Stem
    • 1:54:29 68.
      正常情況下,什麼時候正常呼吸的型態會改變?
    • 1:54:39 69.
      Central Controller
    • 1:55:22 70.
      Central Controller
    • 1:55:22 71.
      Central Controller
    • 1:55:33 72.
      Central Controller
    • 1:56:33 73.
      Effectors
    • 1:57:21 74.
      Outline
    • 2:01:59 75.
      Effectors
    • 2:02:16 76.
      Outline
    • 2:05:53 77.
      Overview
    • 2:06:03 78.
      slido
    • 2:06:15 79.
      Chemical Control of Resp.
    • 2:07:28 80.
      Central Chemoreceptor
    • 2:09:10 81.
      Peripheral Chemoreceptor
    • 2:10:15 82.
      Silent Hypoxia (Happy Hypoxia)
    • 2:11:12 83.
      Regulation of breathing in response to changes in blood PCO2, PO2, and pH (H+) via negative feedback control
    • 2:13:04 84.
      Slide 206
    • 2:14:14 85.
      Outline
    • 2:14:24 86.
      Acid-base Balance
    • 2:15:58 87.
      Effectiveness of a Buffer System
    • 2:17:22 88.
      Bicarbonate
    • 2:17:58 89.
      The Effect of Bicarbonate on Blood pH
    • 2:20:09 90.
      Davenport Diagram
    • 2:21:52 91.
      Respiratory Disturbances
    • 2:22:32 92.
      Metabolic Disturbances
    • 2:23:22 93.
      Compensatory Responses
    • 2:25:25 94.
      Compensatory Responses
    • 2:26:14 95.
      Outline
    • 2:26:23 96.
      Rest-to-Work Transitions
    • 2:27:29 97.
      Sub-maximal Exercise
    • 2:28:10 98.
      Ventilatory Control During Submaximal Exercise
    • 2:28:29 99.
      High Intensity Exercise
    • 2:29:35 100.
      High Intensity Exercise
    • 2:30:17 101.
      Oxygen Debt
    • 2:32:00 102.
      呼吸系統是運動的限制因子嗎?
    • 2:32:05 103.
      Do the Lungs Limit Exercise Performance?
    • 2:32:42 104.
      Effect of Training on Ventilation
    • 2:33:40 105.
      How to Increase Resp. Function During Exercise?
    • 2:38:23 106.
      How to Increase Resp. Function During Exercise?
    • 2:41:30 107.
      Effect of High Altitude on Resp. Function
    • 2:42:12 108.
      Immediate: Increased in Ventilation
    • 2:45:05 109.
      Days: Decreased Affinity of Hemoglobin for Oxygen
    • 2:47:19 110.
      Days to weeks: Increased Hemoglobin Production
    • 2:48:42 111.
      Respiratory Adaptations to High Altitude
    • 2:50:11 112.
      Overview
    • 2:51:12 113.
      The End
    • 2:51:13 114.
      ** after Resp_Physiol 2022 v3.pptm
    Location
    Folder name
    呼吸生理實驗與模擬軟體
    Author
    賴亮全
    Branch
    賴亮全教授
    Created
    2022-10-06 17:24:40
    Last Updated
    2022-10-06 18:20:37
    Duration
    2:51:18